Extensions 1→N→G→Q→1 with N=C25 and Q=C4

Direct product G=N×Q with N=C25 and Q=C4
dρLabelID
C25×C4128C2^5xC4128,2319

Semidirect products G=N:Q with N=C25 and Q=C4
extensionφ:Q→Aut NdρLabelID
C251C4 = C25⋊C4φ: C4/C1C4 ⊆ Aut C2516C2^5:1C4128,513
C252C4 = C2×C2≀C4φ: C4/C1C4 ⊆ Aut C2516C2^5:2C4128,850
C253C4 = C22×C23⋊C4φ: C4/C1C4 ⊆ Aut C2532C2^5:3C4128,1613
C254C4 = C2×C243C4φ: C4/C2C2 ⊆ Aut C2532C2^5:4C4128,1009
C255C4 = C23×C22⋊C4φ: C4/C2C2 ⊆ Aut C2564C2^5:5C4128,2151

Non-split extensions G=N.Q with N=C25 and Q=C4
extensionφ:Q→Aut NdρLabelID
C25.1C4 = C24⋊C8φ: C4/C1C4 ⊆ Aut C2516C2^5.1C4128,48
C25.2C4 = C2×C23⋊C8φ: C4/C1C4 ⊆ Aut C2532C2^5.2C4128,188
C25.3C4 = C25.3C4φ: C4/C1C4 ⊆ Aut C2516C2^5.3C4128,194
C25.4C4 = C25.C4φ: C4/C1C4 ⊆ Aut C2516C2^5.4C4128,515
C25.5C4 = C22×C4.D4φ: C4/C1C4 ⊆ Aut C2532C2^5.5C4128,1617
C25.6C4 = C243C8φ: C4/C2C2 ⊆ Aut C2532C2^5.6C4128,511
C25.7C4 = C22×C22⋊C8φ: C4/C2C2 ⊆ Aut C2564C2^5.7C4128,1608
C25.8C4 = C2×C24.4C4φ: C4/C2C2 ⊆ Aut C2532C2^5.8C4128,1609
C25.9C4 = C23×M4(2)φ: C4/C2C2 ⊆ Aut C2564C2^5.9C4128,2302

׿
×
𝔽